

helper 2.4

helper is a command-line/daemon application wrapper package with the aim of creating a consistent and fast way to creating applications. It is available on the Python Package Index as helper [https://pypi.python.org/pypi/helper]. helper supports both UNIX (Posix) and Windows applications (in process) and works with Python 2.6+ and 3.2+.

Documentation

	Application Initialization Tool

	Getting Started

	Configuration Format
	Application

	Daemon

	Logging

	Signal Handling
	Handling SIGTERM

	Handling SIGHUP

	Handling SIGUSR1

	Handling SIGUSR2

	Adding Commandline Arguments

	helper API
	Controller

	Logging

	parser

	Setup Tools Integration

	Troubleshooting
	Unhandled Exceptions

	Version History

	Version:

	2.4.2

	Github Page:

	https://github.com/gmr/helper

	Author:

	Gavin M. Roy <gavinmroy@gmail.com>

	License:

	Released under the BSD license

Indices and tables

	Index

	Module Index

	Search Page

Application Initialization Tool

helper comes with a command line tool new-helper which will create a stub helper application project with the following items:

	Python package for the application

	Stub application controller

	Basic configuration file

	RHEL based init.d script

	setup.py file for distributing the application

Usage:

usage: new-helper [-h] [--version] PROJECT

When you run the application, a tree resembling the following is created:

PROJECT/
 etc/
 PROJECT.initd
 PROJECT.yml
 PROJECT/
 __init__.py
 controller.py
 setup.py

Where PROJECT is the value you specify when running new-helper.

Getting Started

Creating your first helper application is a fairly straightforward process:

	Download and install helper via pip:

pip install helper

	Create a new application with the new-helper script which will create a stub project including the package directory, configuration file, init.d script for RHEL systems, and setup.py file:

new-helper -p myapp

	Open the controller.py file in myapp/myapp/ and you should have a file that looks similar to the following:

"""myapp

Helper boilerplate project

"""
import helper
import logging
from helper import parser

DESCRIPTION = 'Project Description'
LOGGER = logging.getLogger(__name__)

class Controller(helper.Controller):
 """The core application controller which is created by invoking
 helper.run().

 """

 def setup(self):
 """Place setup and initialization steps in this method."""
 LOGGER.info('setup invoked')

 def process(self):
 """This method is invoked every wake interval as specified in the
 application configuration. It is fully wrapped and you do not need to
 manage state within it.

 """
 LOGGER.info('process invoked')

 def cleanup(self):
 """Place shutdown steps in this method."""
 LOGGER.info('cleanup invoked')

def main():
 parser.description(DESCRIPTION)
 helper.start(Controller)

	Extend the Controller.process method to put your core logic in place.

	If you want to test your app without installing it, I often make a small script in the project directory, something like myapp/myapp.py that looks like the following:

#!/usr/bin/env
from myapp import controller
controller.main()

	Change the mode of the file to u+x and run it:

chmod u+x myapp.py
./myapp.py -c etc/myapp.yml -f

That’s about all there is to it. If you don’t want to use the sleep/wake/process pattern but want to use an IOLoop, instead of extending Controller.process, extend Controller.run.

Configuration Format

helper has a standard configuration file format for creating consistent, easy to configure applications using the YAML <http://yaml.org>_ file format. The configuration file has three case-sensitive sections that are required: Application, Daemon, and Logging.

YAML [http://yaml.org] is used for the configuration file for helper based applications and will automatically be loaded and referenced for all the required information to start your application. The configuration may be reloaded at runtime by sending a USR1 signal to parent process.

Application

As a generalization, this is where your application’s configuration directives go. There is only one core configuration attribute for this section, wake_interval. The wake_interval value is an integer value that is used for the sleep/wake/process flow and tells helper how often to fire the Controller.process method.

Daemon

This section contains the settings required to run the application as a daemon. They are as follows:

	user

	The username to run as when the process is daemonized

	group [optional]

	The group name to switch to when the process is daemonized

	pidfile

	The pidfile to write when the process is daemonized

Logging

helper uses logging.config.dictConfig [http://docs.python.org/library/logging.config.html] module to create a flexible method for configuring the python standard logging module. If Python 2.6 is used, logutils.dictconfig.dictConfig [https://pypi.python.org/pypi/logutils] is used instead.

The following basic example illustrates all of the required sections in the dictConfig format, implemented in YAML:

version: 1
formatters: []
verbose:
 format: '%(levelname) -10s %(asctime)s %(process)-6d %(processName) -15s %(name) -10s %(funcName) -20s: %(message)s'
 datefmt: '%Y-%m-%d %H:%M:%S'
handlers:
 console:
 class: logging.StreamHandler
 formatter: verbose
 debug_only: True
loggers:
 helper:
 handlers: [console]
 level: INFO
 propagate: true
 myapp:
 handlers: [console]
 level: DEBUG
 propagate: true
disable_existing_loggers: true
incremental: false

Note

The debug_only node of the Logging > handlers > console section is not part of the standard dictConfig format. Please see the Logging Caveats section below for more information.

Logging Caveats

In order to allow for customizable console output when running in the foreground and no console output when daemonized, a “debug_only” node has been added to the standard dictConfig format in the handler section. This method is evaluated in the helper.Logging and removed, if present, prior to passing the dictionary to dictConfig if present.

If the value is set to true and the application is not running in the foreground, the configuration for the handler and references to it will be removed from the configuration dictionary.

Troubleshooting

If you find that your application is not logging anything or sending output to the terminal, ensure that you have created a logger section in your configuration for your controller. For example if your Controller instance is named MyController, make sure there is a MyController logger in the logging configuration.

Signal Handling

The helper.Controller class will automatically setup and handle signals for your application.

When the Controller extended application starts, helper registers handlers for four signals:

	Handling SIGTERM

	Handling SIGHUP

	Handling SIGUSR1

	Handling SIGUSR2

Signals received call registered methods within the Controller class. If you are using multiprocessing and have child processes, it is up to you to then signal your child processes appropriately.

Handling SIGTERM

In the event that your application receives a TERM signal, it will change the internal state of the Controller class indicating that the application is shutting down. This may be checked for by checking for a True value from the attribute Controller.is_stopping Controller.is_stopping. During this type of shutdown, Controller.cleanup will be invoked. This method is meant to be extended by your application for the purposes of cleanly shutting down your application.

Handling SIGHUP

The behavior in HUP is to cleanly shutdown the application and then start it back up again. It will, like with TERM, call the Controller.stop method. Once the shutdown is complete, it will clear the internal state and configuration and then invoke Controller.run.

Handling SIGUSR1

If you would like to reload the configuration, sending a USR1 signal to the parent process of the application will invoke the Controller.reload_configuration method, freeing the previously help configuration data from memory and reloading the configuration file from disk. Because it may be desirable to change runtime configuration without restarting the application, it is advised to use the Controller.config property method to retrieve configuration values each time instead of holding config values as attributes.

Handling SIGUSR2

This is an unimplemented method within the Controller class and is registered for convenience. If have need for custom signal handling, redefine the Controller.on_signusr2 method in your child class.

Adding Commandline Arguments

If you would like to add additional command-line options, access helper’s argparse based parser [http://docs.python.org/3/library/argparse.html] adding additional command line arguments as needed. The arguments will be accessible via the Controller.args attribute.

Example:

from helper import parser

p = parser.get()
p.add_argument('-n', '--newrelic',
 action='store',
 dest='newrelic',
 help='Path to newrelic.init for enabling NewRelic '
 'instrumentation')
p.add_argument('-p', '--path',
 action='store_true',
 dest='path',
 help='Path to prepend to the Python system path')

You can also override the auto-assigned application name:

from helper import parser

parser.name('my-app')

And the default description:

from helper import parser

parser.description('My application rocks!')

helper API

	Controller

	Logging

	parser

	Setup Tools Integration

Controller

Extend the Controller class with your own application implementing the Controller.process method. If you do not want to use sleep based looping but rather an IOLoop or some other long-lived blocking loop, redefine the Controller.run method.

Controller maintains an internal state which is handy for ensuring the proper things are happening at the proper times. The following are the constants used for state transitions:

	Initializing

	Active

	Idle

	Sleeping

	Stop Requested

	Stopping

	Stopped

When extending Controller, if your class requires initialization or setup setups, extend the Controller.setup method.

If your application requires cleanup steps prior to stopping, extend the Controller.cleanup method.

	
class helper.Controller(args, operating_system)

	Extend this class to implement your core application controller. Key
methods to implement are Controller.setup, Controller.process and
Controller.cleanup.

If you do not want to use the sleep/wake structure but rather something
like a blocking IOLoop, overwrite the Controller.run method.

	
APPNAME = 'sphinx-build'

	

	
SLEEP_UNIT = 0.5

	When shutting down, how long should sleeping block the interpreter while
waiting for the state to indicate the class is no longer active.

	
STATE_ACTIVE = 4

	The active state should be set whenever the implementing class is
performing a task that can not be interrupted.

	
STATE_IDLE = 3

	The idle state is available to implementing classes to indicate that
while they are not actively performing tasks, they are not sleeping.
Objects in the idle state can be shutdown immediately.

	
STATE_INITIALIZING = 1

	Initializing state is only set during initial object creation

	
STATE_SLEEPING = 2

	When helper has set the signal timer and is paused, it will be in the
sleeping state.

	
STATE_STOPPED = 7

	Once the application has fully stopped, the state is set to stopped.

	
STATE_STOPPING = 6

	Once the application has started to shutdown, it will set the state to
stopping and then invoke the Controller.stopping() method.

	
STATE_STOP_REQUESTED = 5

	The stop requested state is set when a signal is received indicating the
process should stop. The app will invoke the Controller.stop()
method which will wait for the process state to change from STATE_ACTIVE

	
VERSION = '2.4.2'

	

	
WAKE_INTERVAL = 60

	How often should Controller.process() be invoked

	
cleanup()

	Override this method to cleanly shutdown the application.

	
configuration_reloaded()

	Override to provide any steps when the configuration is reloaded.

	
current_state

	Property method that return the string description of the runtime
state.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
is_active

	Property method that returns a bool specifying if the process is
currently active.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_idle

	Property method that returns a bool specifying if the process is
currently idle.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_initializing

	Property method that returns a bool specifying if the process is
currently initializing.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_running

	Property method that returns a bool specifying if the process is
currently running. This will return true if the state is active, idle
or initializing.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_sleeping

	Property method that returns a bool specifying if the process is
currently sleeping.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_stopped

	Property method that returns a bool specifying if the process is
stopped.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_stopping

	Property method that returns a bool specifying if the process is
stopping.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
is_waiting_to_stop

	Property method that returns a bool specifying if the process is
waiting for the current process to finish so it can stop.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
on_sighup(signum_unused, frame_unused)

	Called when SIGHUP is received, shutdown internal runtime state,
reloads configuration and then calls Controller.run(). Can be extended
to implement other behaviors.

	
on_sigterm(signum_unused, frame_unused)

	Called when SIGTERM is received, calling self.stop(). Override to
implement a different behavior.

	
on_sigusr1(signum_unused, frame_unused)

	Called when SIGUSR1 is received, does not have any attached
behavior. Override to implement a behavior for this signal.

	
on_sigusr2(signum_unused, frame_unused)

	Called when SIGUSR2 is received, does not have any attached
behavior. Override to implement a behavior for this signal.

	
process()

	To be implemented by the extending class. Is called after every
sleep interval in the main application loop.

	
run()

	The core method for starting the application. Will setup logging,
toggle the runtime state flag, block on loop, then call shutdown.

Redefine this method if you intend to use an IO Loop or some other
long running process.

	
set_state(state)

	Set the runtime state of the Controller. Use the internal constants
to ensure proper state values:

	Controller.STATE_INITIALIZING

	Controller.STATE_ACTIVE

	Controller.STATE_IDLE

	Controller.STATE_SLEEPING

	Controller.STATE_STOP_REQUESTED

	Controller.STATE_STOPPING

	Controller.STATE_STOPPED

	Parameters:	state (int [https://docs.python.org/2/library/functions.html#int]) – The runtime state

	Raises:	ValueError

	
setup()

	Override to provide any required setup steps.

	
setup_signals()

	

	
shutdown()

	Override to provide any required shutdown steps.

	
start()

	Important:

Do not extend this method, rather redefine Controller.run

	
stop()

	Override to implement shutdown steps.

	
system_platform

	Return a tuple containing the operating system, python
implementation (CPython, pypy, etc), and python version.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple](str [https://docs.python.org/2/library/functions.html#str], str [https://docs.python.org/2/library/functions.html#str], str [https://docs.python.org/2/library/functions.html#str])

	
wake_interval

	Property method that returns the wake interval in seconds.

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

Logging

The Logging class is included as a convenient wrapper to handle Python 2.6 and Python 2.7 dictConfig differences as well as to manage the helper specific debug_only Handler setting.

If you want to use the default console only logging for helper, you do not need to implement this configuration section. Any configuration you specify merges with the default configuration.

Default Configuration

disable_existing_loggers: true
filters: {}
formatters:
 verbose:
 datefmt: '%Y-%m-%d %H:%M:%S'
 format: '%(levelname) -10s %(asctime)s %(process)-6d %(processName) -15s %(threadName)-10s %(name) -25s %(funcName) -25sL%(lineno)-6d: %(message)s'
handlers:
 console:
 class: logging.StreamHandler
 debug_only: true
 formatter: verbose
incremental: false
loggers:
 helper:
 handlers: [console]
 level: INFO
 propagate: true
root:
 handlers: []
 level: 50
 propagate: true
version: 1

	
class helper.config.LoggingConfig(configuration, debug=None)

	The Logging class is used for abstracting away dictConfig logging
semantics and can be used by sub-processes to ensure consistent logging
rule application.

	
configure()

	Configure the Python stdlib logger

	
update(configuration, debug=None)

	Update the internal configuration values, removing debug_only
handlers if debug is False. Returns True if the configuration has
changed from previous configuration values.

	Parameters:	
	configuration (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The logging configuration

	debug (bool [https://docs.python.org/2/library/functions.html#bool]) – Toggles use of debug_only loggers

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

parser

The parser module is used for interacting with argparse, setting up the
argument parser and the default values.

Command line argument parsing

	
helper.parser.description(value)

	A string providing a description of the application
(default: none)

	Parameters:	value (str [https://docs.python.org/2/library/functions.html#str]) – Description value

	
helper.parser.epilog(value)

	Text to display after the description of the arguments
(default: none)

	Parameters:	value (str [https://docs.python.org/2/library/functions.html#str]) – Epilog value

	
helper.parser.get()

	Return the handle to the argument parser.

	Return type:	argparse.ArgumentParser [https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser]

	
helper.parser.name(value)

	A string providing an override of the name of the application from what
is obtained from sys.argv[0].
(default: sys.argv[0])

	Parameters:	value (str [https://docs.python.org/2/library/functions.html#str]) – Name value

	
helper.parser.parse()

	Parse the command line arguments and return the result

	Return type:	argparse.Namespace [https://docs.python.org/2/library/argparse.html#argparse.Namespace]

	
helper.parser.usage(value)

	The string describing the program usage
(default: generated from arguments added to parser)

	Parameters:	value (str [https://docs.python.org/2/library/functions.html#str]) – Usage value

Setup Tools Integration

Helper installs an additional distutils command named run_helper that will run a Controller directly from your setup.py. This is a nice alternative to writing your our shell wrapper for use during development. If setup.py is executable, then you can run myapp.Controller with:

./setup.py run_helper -c etc/myapp.yml -C myapp.Controller

This functionality is a standard distutils entry point so it follows all of the same rules as other extensions such as build_sphinx or nosetests. The command line arguments can be included in the [run_helper] section of setup.cfg:

[run_helper]
configuration = etc/myapp.yml
controller = myapp.Controller

Troubleshooting

If you find that you start your application and it immediately dies without any output on the screen, be sure to check for Unhandled Exceptions.

Unhandled Exceptions

By default helper will write any unhandled exceptions to a file in one of the following paths:

UNIX:
- /var/log/<APPNAME>.errors
- /var/tmp/<APPNAME>.errors
- /tmp/<APPNAME>.errors

Windows:
- Not implemented yet.

Version History

	
	2.4.2 - 2015-11-04 - Allow for ‘root’ section in logging config

	
	Import reduce from functools to suport Python 3

	2.4.1 - 2013-03-14 - Fix fchmod literal call in Python 3

	2.4.0 - 2013-03-13 - Better startup exception reporting, improved pidfile ownership handling, new run_helper command

	2.3.0 - 2013-02-07 - Fix for umask handling

	2.2.3 - 2013-10-21 - Minor MANIFEST.in fix for setup.py

	2.2.2 - 2013-10-21 - Minor MANIFEST.in fix for README.rst

	2.2.1 - 2013-10-21 - Minor setup.py version number fix

	2.2.0 - 2013-10-21 - Add new attribute to describe operating system and environment to helper.Controller and helper.unix, helper.windows.

	2.1.1 - 2013-10-10 - Bugfix for dealing with stale pids

	2.1.0 - 2013-09-24 - Bugfixes: Use pidfile from configuration if specified, don’t show warning about not having a logger in helper.unix if no logger is defined, config obj default/value assignment methodology

	2.0.2 - 2013-08-28 - Fix a bug where wake_interval default was not used if wake_interval was not provided in the config. Make logging config an overlay of the default logging config.

	2.0.1 - 2013-08-28 - setup.py bugfix

	2.0.0 - 2013-08-28 - clihelper renamed to helper with a major refactor. Windows support still pending.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 helper	

 	
 	
 helper.parser	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | U
 | V
 | W

A

 	
 	APPNAME (helper.Controller attribute)

C

 	
 	cleanup() (helper.Controller method)

 	configuration_reloaded() (helper.Controller method)

 	
 	configure() (helper.config.LoggingConfig method)

 	Controller (class in helper)

 	current_state (helper.Controller attribute)

D

 	
 	description() (in module helper.parser)

E

 	
 	epilog() (in module helper.parser)

G

 	
 	get() (in module helper.parser)

H

 	
 	helper.parser (module)

I

 	
 	is_active (helper.Controller attribute)

 	is_idle (helper.Controller attribute)

 	is_initializing (helper.Controller attribute)

 	is_running (helper.Controller attribute)

 	
 	is_sleeping (helper.Controller attribute)

 	is_stopped (helper.Controller attribute)

 	is_stopping (helper.Controller attribute)

 	is_waiting_to_stop (helper.Controller attribute)

L

 	
 	LoggingConfig (class in helper.config)

N

 	
 	name() (in module helper.parser)

O

 	
 	on_sighup() (helper.Controller method)

 	on_sigterm() (helper.Controller method)

 	
 	on_sigusr1() (helper.Controller method)

 	on_sigusr2() (helper.Controller method)

P

 	
 	parse() (in module helper.parser)

 	
 	process() (helper.Controller method)

R

 	
 	run() (helper.Controller method)

S

 	
 	set_state() (helper.Controller method)

 	setup() (helper.Controller method)

 	setup_signals() (helper.Controller method)

 	shutdown() (helper.Controller method)

 	SLEEP_UNIT (helper.Controller attribute)

 	start() (helper.Controller method)

 	STATE_ACTIVE (helper.Controller attribute)

 	
 	STATE_IDLE (helper.Controller attribute)

 	STATE_INITIALIZING (helper.Controller attribute)

 	STATE_SLEEPING (helper.Controller attribute)

 	STATE_STOP_REQUESTED (helper.Controller attribute)

 	STATE_STOPPED (helper.Controller attribute)

 	STATE_STOPPING (helper.Controller attribute)

 	stop() (helper.Controller method)

 	system_platform (helper.Controller attribute)

U

 	
 	update() (helper.config.LoggingConfig method)

 	
 	usage() (in module helper.parser)

V

 	
 	VERSION (helper.Controller attribute)

W

 	
 	WAKE_INTERVAL (helper.Controller attribute)

 	
 	wake_interval (helper.Controller attribute)

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up.png

nav.xhtml

 Table of Contents

 		helper 2.4

 		Application Initialization Tool

 		Getting Started

 		Configuration Format

 		Application

 		Daemon

 		Logging

 		Logging Caveats

 		Troubleshooting

 		Signal Handling

 		Handling SIGTERM

 		Handling SIGHUP

 		Handling SIGUSR1

 		Handling SIGUSR2

 		Adding Commandline Arguments

 		helper API

 		Controller

 		Logging

 		Default Configuration

 		parser

 		Setup Tools Integration

 		Troubleshooting

 		Unhandled Exceptions

 		Version History

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

